Decision making in C. elegans chemotaxis to alkaline pH
نویسندگان
چکیده
Monitoring of environmental and tissue pH is critical for animal survival. The nematode, Caenorhabditis elegans (C. elegans), is attracted to mildly alkaline pH, but avoids strongly alkaline pH. However, little is known about how the behavioral switching or decision making occurs. Genetic dissection and Ca(2+) imaging have previously demonstrated that ASEL and ASH are the major sensory neurons responsible for attraction and repulsion, respectively. Here we report that unlike C. elegans wild type, mutants deficient in ASEL or ASH were repelled by mildly alkaline pH, or were attracted to strongly alkaline pH, respectively. These results suggest that signals through ASEL and ASH compete to determine the animal's alkaline-pH chemotaxis. Furthermore, mutants with 2 ASEL neurons were more efficiently attracted to mildly alkaline pH than the wild type with a single ASEL neuron, indicating that higher activity of ASEL induces stronger attraction to mildly alkaline pH. This stronger attraction was overridden by normal activity of ASH, suggesting that ASH-mediated avoidance dominates ASEL-mediated attraction. Thus, C. elegans chemotactic behaviors to alkaline pH seems to be determined by signal strengths from the sensory neurons ASEL and ASH, and the behavior decision making seems to be the result of competition between the 2 sensory neurons.
منابع مشابه
Effect of Temperature Pre-Exposure on the Locomotion and Chemotaxis of C. elegans
The effect of temperature pre-exposure on locomotion and chemotaxis of the soil-dwelling nematode Caenorhabditis elegans has been extensively studied. The behavior of C. elegans was quantified using a simple harmonic curvature-based model. Animals showed increased levels of activity, compared to control worms, immediately after pre-exposure to 30 °C. This high level of activity in C. elegans tr...
متن کاملA G-protein α subunit, GOA-1, plays a role in C. elegans avoidance behavior of strongly alkaline pH
The ability of animals to avoid strongly alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. We have previously found that the nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. Detection involves ASH nociceptive neurons as the major sensors. Upon stimulation, transient receptor potential vanilloid-type (TRP...
متن کاملTMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons
Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation have been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins whose functions are largely unknown. Here, we characterize C. elegans TMC-1, which was suggested to form...
متن کاملSurvival and Chemotactic Behavior of H pylori at Different Media pH
Background: H pylori is a human gastric pathogen. Chemotaxis is an essential factor in colonization of H pylori, but very little is known about its chemotactic responses at different pH conditions, especially in acidic environment of stomach as its natural habitant. Methods: We first determined survival of H pylori under various pH conditions in the presence and absence of urea. Chemotaxis was...
متن کاملSensing pH with TMCs
Transmembrane channel-like (TMC) proteins have been implicated in hair cell mechanotransduction, Drosophila proprioception, and sodium sensing in the nematode C. elegans. In this issue of Neuron, Wang et al. (2016) report that C. elegans TMC-1 mediates nociceptor responses to high pH, not sodium, allowing the nematode to avoid strongly alkaline environments in which most animals cannot survive.
متن کامل